

4/4/2017

Motivation

- Film
 - Small negative (or slide) needs to be enlarged
 - ≻ Slides → projector
 - \rightarrow Prints \rightarrow enlarger

35mm Slide

35mm Negative

0.85 inches

Motivation

• Film

- Small negative needs to be enlarged
 - ≻ Slides → projector
 - > Prints \rightarrow enlarger
- Done optically
 - > Film consists of random light-sensitive 'grains' in an emulsion
 - Lenses and a light source used to project a larger image

Motivation

• Digital

Note: Monitor pixels are composed of three physically separate color emitters—if small enough (or far enough away) the eye will combine them into a single multicolored pixel

- Need to resize to match display device
 - > Monitor: low resolution relative to camera sensor \rightarrow shrink image
 - > Printer: resolution depends print size, can be high \rightarrow enlarge image
- Resolution
 - Number of pixel elements (pixels) which comprise an image

Motivation

Note: Camera sensor pixels are single light sensitive sites, each with a red, green, or blue color filter—the result is the Bayer filter array

- Digital
 - Resizing done by computer manipulation of pixel counts
 - Fewer pixels = lower resolution, more pixels = higher resolution

Motivation

Note: The 'demosaic' interpolation process estimates missing RGB data from RAW pixel values

- Digital
 - Resizing done by computer manipulation of pixel counts
 - Fewer pixels = lower resolution, more pixels = higher resolution
 - ▶ Bayer data to full RGB data \rightarrow 'demosaic' algorithm

Scaling down

- Reducing resolution by combining pixel data
 - Not a trivial operation in general
 - > Data needs to be combined across rows and columns

simple case (rare) \rightarrow new grid cells contain an exact number of source pixels

Scaling down

Note: When scaling down by a large amount softness is less apparent, because the image lacks the resolution to display soft transitions

- Reducing resolution by combining pixel data
 - Not a trivial operation in general
 - > Data needs to be combined across rows and columns
 - > Preserving edge transitions is a challenge \rightarrow images tend to soften

complex case (common) \rightarrow new grid cells contain fractions of source pixels

Scaling down

Note: In a weighted average, the values that are summed to determine the average are scaled according to how much they contribute

Figure 2

- Reducing resolution by combining pixel data
 - Not a trivial operation in general
 - > Data needs to be combined across rows and columns
 - > Preserving edge transitions is a challenge \rightarrow images tend to soften
 - Many algorithms exist
 - > Some are better than others in general \rightarrow weighted average is poor
 - Some are better then others for specific images
 - Recommended standard algorithms: Bicubic and Lanczos

Scaling up

Note: Interpolation uses mathematics to estimate values in between known data points

- Increasing resolution by interpolating pixel data
 - Even more difficult than scaling down
 - Math can estimate values, but doesn't "understand" the scene
 - > Image softening is much more pronounced
 - Many algorithms exist
 - Single-purpose algorithms tend to perform best
 - > Usually part of a standalone program or app
 - Recommended algorithms: Genuine Fractals and A Sharper Scaling

Bicubic

Bicubic + sharpen PS preserve details

A Sharper Scaling

Printing

Note: Printing is generally less sensitive to scaling effects than viewing images on a monitor

Maximum resolution

- Each printer has its own maximum resolution (dots per inch)
 - Common inkjet values: 300 dpi, 350 dpi, 360 dpi
 - Pro inkjet printers may accept double resolution: 600 dpi, 720 dpi
 - Example: 6000 x 4000 image (24 MP) @ 300 dpi = 20" x 13.3" print
- Scaling
 - > Smaller print \rightarrow scale down the image
 - > Larger print \rightarrow print dots farther apart -or- scale up the image
 - > Issue: how well does the printer handle resolution mismatches?
 - Solution: resize manually with a good algorithm, print at maximum resolution → might not be necessary for modern printers
 - Example: 15" x 10" print @ 360 dpi = 5400 x 3600 pixels

Note: unsharp mask can be used for better sharpening control

Image editor

- Print Size
 - Select print size @ resolution
 - Resolution/print size does not matter for competition images
- Pixel Dimensions
 - Select Pixels or Percent
 - 'Locked' \rightarrow aspect ratio fixed
 - Competition \rightarrow select Pixels
 - > Width \leq 1400, Height \leq 1050
- Advanced settings
 - Algorithm \rightarrow Bicubic, etc.
 - Sharpness control to compensate for loss of edge contrast

Image editor

- Advanced settings
 - Lock aspect ratio
 - > Choose if aspect ratio is 'locked'
 - Normally selected, otherwise objects may appear distorted
 - Maintain original print size
 - If selected, print width & height are fixed and resolution changes as pixel dimensions are changed
 - Resize all layers
 - Normally selected, if not selected then only the current layer is resized (rare)

Image editor

- Image information
 - Dimensions
 - Check pixel counts for competition images → 1400 (width) x 1050 (height) maximum
 - Print size and resolution (pixels per inch) not important for competition images
 - Color depth
 - > 8 bits/channel for competition images

Current Image Information				×
Image Information	Creator Information	Watermark Informati	on EXIF Information	_
Source file				
File name:				
File type:				
Image				
Dimensions:			1400 x 933 Pixels	
			3.889 x 2.592 Inches	
Pixels Per Inch:			360.000	
Pixel depth/color	S:		RGB - 8 bits/channel	
Status				
Has been modifi	ed:		Yes	
Has a selection:			No	
Number of layers	3:		1	
Number of alpha channels:			0	
Memory used				
		On disk	In RAM	
Image:			3835K	
Image caches:			0K	
Undo:		70312K	20K	
Total:		70312K	3856K	
		ОК	Cancel Help	